

GCE

Mathematics

Unit 4734: Probability and Statistics 3

Advanced GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

Annotations

Annotation in scoris	Meaning
✓ and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0 M1	Method mark awarded 0, 1
A0 A1	Accuracy mark awarded 0, 1
B0 B1	Independent mark awarded 0, 1
SC	Special case
▲	Omission sign
MR	Misread
Highlighting	
• •••••••••••••••••••••••••••••••••••	
Other abbreviations in mark scheme	Meaning
	Mark for explaining
	Mark for correct units
	Mark for a correct feature on a graph
M1 dep [*]	Method mark dependent on a previous mark, indicated by ^
Cao	
00	Or equivalent
rot	Rounded or truncated
SOI	Seen or implied
WWW	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics (OCR) Statistics strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c. The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

Candidates are expected to give numerical answers to an appropriate degree of accuracy. 3 significant figures may often be the norm for this, but this always needs to be considered in the context of the problem in hand. For example, in quoting probabilities from Normal tables, we generally expect *some* evidence of interpolation and so quotation to 4 decimal places will often be appropriate. But even this does not always apply – quotations of the standard critical points for significance tests such as 1.96, 1.645, 2.576 (maybe even 2.58 – but not 2.57) will commonly suffice, especially if the calculated value of a test statistic is nowhere near any of these values. Sensible discretion *must* be exercised in such cases.

Mark Scheme

Discretion must also be exercised in the case of small variations in the degree of accuracy to which an answer is given. For example, if 3 significant figures are expected (either because of an explicit instruction or because the general context of a problem demands it) but only 2 are given, loss of an accuracy ("A") mark is likely to be appropriate; but if 4 significant figures are given, this should not normally be penalised. Likewise, answers which are slightly deviant from what is expected in a very minor manner (for example a Normal probability given, after an attempt at interpolation, as 0.6418 whereas 0.6417 was expected) should not be penalised. However, answers which are *grossly* over- or under-specified should normally result in the loss of a mark. This includes cases such as, for example, insistence that the value of a test statistic is (say) 2.128888446667 merely because that is the value that happened to come off the candidate's calculator. Note that this applies to answers that are given as final stages of calculations; intermediate working should usually be carried out, and quoted, to a greater degree of accuracy to avoid the danger of premature approximation.

The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h. Genuine misreading (of numbers or symbols, occasionally even of text) occurs. If this results in the object and/or difficulty of the question being considerably changed, it is likely that all the marks for that question, or section of the question, will be lost. However, misreads are often such that the object and/or difficulty remain substantially unaltered; these cases are considered below.

The simple rule is that *all* method ("M") marks [and of course all independent ("B") marks] remain accessible but at least some accuracy ("A") marks do not. It is difficult to legislate in an overall sense beyond this global statement because misreads, even when the object and/or difficulty remains unchanged, can vary greatly in their effects. For example, a misread of 1.02 as 10.2 (perhaps as a quoted value of a sample mean) may well be catastrophic; whereas a misread of 1.6748 as 1.6746 may have so slight an effect as to be almost unnoticeable in the candidate's work.

A misread should normally attract *some* penalty, though this would often be only 1 mark and should rarely if ever be more than 2. Commonly in sections of questions where there is a numerical answer either at the end of the section or to be obtained and commented on (eg the value of a test statistic), this answer will have an "A" mark that may actually be designated as "cao" [correct answer only]. This should be interpreted *strictly* – if the misread has led to failure to obtain this value, then this "A" mark must be withheld even if all method marks have been earned. It will also often be the case that such a mark is implicitly "cao" even if not explicitly designated as such.

Mark Scheme

On the other hand, we commonly allow "fresh starts" within a question or part of question. For example, a follow-through of the candidate's value of a test statistic is generally allowed (and often explicitly stated as such within the marking scheme), so that the candidate may exhibit knowledge of how to compare it with a critical value and draw conclusions. Such "fresh starts" are not affected by any earlier misreads.

A misread may be of a symbol rather than a number – for example, an algebraic symbol in a mathematical expression. Such misreads are more likely to bring about a considerable change in the object and/or difficulty of the question; but, if they do not, they should be treated as far as possible in the same way as numerical misreads, *mutatis mutandis*. This also applied to misreads of text, which are fairly rare but can cause major problems in fair marking.

The situation regarding any particular cases that arise while you are marking for which you feel you need detailed guidance should be discussed with your Team Leader.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

G	uestion	Answer	Marks	Guidance		
1		Poisson identified or implied. Mean = 14 1 - 0.6694 0.331	B1 B1 M1 A1 [4]	If N used, B0.		
2		H ₀ :there is no assoc. between party and opinion, H ₁ :there is assoc. between p/o.Expected frequencies45, 18, 27, 20, 8, 12, 35, 14, 21 $\frac{(58-45)^2}{45} + \ldots + \frac{(33-21)^2}{21}$ 30.48TS > 13.28, reject H ₀ There is evidence that there is an association between party and opinion.	B1 M1 A1 M1 A1 M1 A1 [7]	For both.Allow indpt. etc. At least one correct term; at least 7 terms. Allow awrt 30.5 CWO	If classes combined, all 6.	
3	(i)	Var = $\frac{8 \times 42}{50^3}$ 1.96 0.16±1.96 $\sqrt{\frac{8 \times 42}{50^3}}$ [0.058,0.262]	B1 B1 M1 A1 [4]	Var must be of correct structure. Allow 2sf. Must be interval.		
3	(ii)	$\overline{x} = 224.1$ 2.576 "224.1" $\pm 2.576 \times \frac{8.5}{\sqrt{10}}$	B1 B1 M1	Any z. NOT t. Must be correct sd.	Must see all values substituted.	

4734

Question		n Answer	Marks	Guidance		
		[217.2,231.0]	A1	Allow [217,231] Must be interval.	Do not penalise if penalised in	
			[4]		i.	
4	(i)	$H_{0:} \mu_1 = \mu_2$ $H_{1:} \mu_2 > \mu_1$	B1	allow $\mu_D=0$, $\mu_D>0$; $\delta=0$, $\delta>0$. If words, "population" must be used.	2-sample test.	
		Diffs 4, 14, -1, -11, 9, 14, -1, 4, 4, 19	M1	allow all reversed. Must have differences of both signs. Can be implied by attempt	B1 Hyps.	
		$\overline{d} = 5.5$	A1	at s. allow -5.5	B1 5.5 or 62–56.5	
		$\hat{\sigma} = 8.83(49)$	A1	$\hat{\sigma}^2 = \frac{1405}{18} = 78.0\dot{5}$	M1 5.5/σ,σ must include 1/10 or 1/10 + 1/10	
		$TS = \frac{5.5}{(8.835)}$	M1	allow if s used. Must have $\sqrt{10}$.		
		$\left(\overline{\sqrt{10}}\right)$		SC $d = 5.5$ no diffs seen B1.		
		1.97	A1			
		"1.97" > 1.833 reject H_0	M1	Allow consistent –ve signs.	M1 compare with 1.734, make	
		There is evidence that the field-work has improved performance.	A1	Contextualised, not over-assertive. CWO.	Max 4 out of 8.	
	(ii)	Differences are normally distributed.	[8] B1 [1]	allow if seen. Ignore all else.		
5	(i)	30a + 20b = 410 oe $a^{2} + b^{2} = 130 \text{ oe}$ $13a^{2} - 246a + 1161 = 0$ a = 9, b = 7	B1 B1 M1A1 A1 [5]	Obtain quadratic in a or b.	13 <i>b</i> ² - 164 <i>b</i> + 511=0	

Question		Answer	Marks Guidanc		
(ii)		$X - Y \sim N(10, 2\sigma^2)$	M1A1	M1 for N(10,anything)	allow -10,30-20,20-30 for M1
		$\frac{0-10}{\sqrt{2\sigma^2}}$ =-1.825 (or 6)	M1A1	must have $2\sigma^2$. Must have matching signs for M1	
		(-)1.825/6 seen	B1		

4734

Mark Scheme

Question		on	Answer	Marks	Guidance		
			15.0 CWO	A1	80000		
					5329		
				[6]			
6	(i)		$H_0: \mu_y - \mu_x = 0.04 \ H_1: \mu_y - \mu_x > 0.04$	B1	Allow \leq in NH, allow μ_D etc.		
			$\hat{\sigma}^2 = \sqrt{\frac{0.2043}{285} + \frac{0.2323}{260}}$	M1A1	M1 for attempt to combine vars using denominators, inc pooled.	Allow 284, 259	
			$\frac{3.352-3.303-0.04}{\hat{\sigma}}$	M1	±0.009 soi.	NB 0.04 missing \rightarrow 1.221	
			0.224	A1			
			CV = 1.645	B1	p=0.411		
			$TS < CV$, (so do not reject H_0)	M1	Must be <, AG. ft TS or prob.		
					0.411>0.05oe do not reject H ₀ .		
				[7]			
			0.009 1.645	N/1 A 1	allow allow 2.252.2.202.0.04 Correct	\mathbf{h}	
	(11)		$\frac{0.000}{\sqrt{0.2043+0.2323}} > 1.045$	MIAI	allow =, allow $5.552-5.505-0.04$. Correct	$\begin{array}{c} \text{Incorrect } Z \text{, MTAU.} \\ \text{NP} 0.04 \end{array}$	
					var only.	missing $\rightarrow 102/3$ M0A0M1A0	
			Solve	M1		$\frac{11188111}{11492} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{10} \cdot \frac$	
			14 586		Allow 14 600 or 14590 Must be integer	NOT 14585 (not ISW)	
			14 500	[4]	Thiow 14 000 of 14590. What be integer.		
				[-]			
7	(i)		\int_{1}^{1} 3 , \int_{2}^{2} 2 , 1	M1			
1	(1)		$\int_0 ax^3 dx + \int_1 ax^2 dx = 1$				
			$a = \frac{12}{31}$ AG	A1	Need to see $a/4 \& 7a/3$ oe		
				[2]			
				[4]			
7	(i)		$ \frac{14586}{\int_{0}^{1} ax^{3} dx + \int_{1}^{2} ax^{2} dx = 1}{a = \frac{12}{31} \text{ AG}} $	A1 [4] M1 A1 [2]	Allow 14 600 or 14590. Must be integer. Need to see $a/4 \& 7a/3$ oe	NOT 14585.(not ISW)	

G	Question		Answer	Marks	Guidance		
7	(ii)		$\int_0^1 ax^4 dx + \int_1^2 ax^3 dx$	M1	allow x.ax ³ , x.ax ²		
			$\frac{237}{155}$ or 1.53	A1			
				[2]			
7	(iii)		H ₀ : data can be modelled by X H ₁ : data cannot be modelled by X oe	B1	Or $f(x)$		
			Expected values [6, 90,] 304, 592	M1A2	M1A1 for 1 correct	eg 992× $\frac{12}{31} \left[\frac{x^3}{3} \right]_{1}^{1.5}$ for M1	
			$TS = \frac{(8-6)^2}{6} + \dots + \frac{(613-592)^2}{592}$	M1			
			= 3.51(2)	A1			
			TS < 7.815 , do not reject H ₀	M1	ft TS not CV. Allow 7.8		
			modelled by X	AI	CwO		
			modelied by A.	[8]			
8	(i)		pdf of $R = \frac{1}{10}$ soi	B1	Method based on int. by subn.		
					$\int_{10}^{10} 1$ $\int_{10}^{10} 1$		
					$\int_{0} \frac{1}{10} dr = 1 \text{ M1}^{*}$		
					$\frac{dA}{dr} = 8\pi r *M1$	NOT 8πr alone	
					$\int_{0}^{400\pi} \frac{1}{80\pi} \frac{dA}{\sqrt{\frac{A}{4\pi}}} = 1 M1$		
					$pdf = \frac{1}{40\sqrt{\pi a}} B1$		
					attempt int to obtain cdf. M1		

4734

Mark Scheme

Q	Question		Answer	Marks	Guidance
			Cdf of $R = \frac{r}{10}$ allow $\frac{x}{10}$ $[F_A(a) =] P(A \le a) = P(4\pi R^2 \le a)$ $P(R \le \sqrt{[a/4\pi]}) = F_R(\sqrt{[a/4\pi]})$ $\frac{\sqrt{a}}{20\sqrt{\pi}}$ (SC B1 if obtained without M marks) $f_A(a) = \frac{1}{40\sqrt{a\pi}}$	B1 M1 M1 A1 M1A1	$\frac{\sqrt{a}}{20\sqrt{\pi}}$ A1final B1 for range as main scheme.allow M0M1 for eg πr^2 rearranged and substituted correctly.M1 for diffn.
			$0 \le a \le 400\pi$	B1 [8]	

C	Question		Answer	Marks	Guidance	
8	(ii)		$\frac{\sqrt{200\pi}}{20\sqrt{\pi}}$ 0.707 or $\frac{1}{\sqrt{2}}$	M1 A1 [2]	Sub 200π in their cdf.	$4\pi r^{2}=200\pi$ r= $\sqrt{50}$ prob= $\frac{\sqrt{50}}{10}$ M1 0.707 A1

⁴⁷³⁴

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2016